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THE EFFECT OF THIRD-AND FOURTH-ORDER MOMENTS
OF INERTIA ON THE MOTION OF A SOLID"

R.S. SULIKASHVILI

The problem of the effects of higher-order moments of inertia on the
motion of a solid, fixed at the centre of mass and having a spherical
central ellipsoid of inertia in a central Newtonian field of force is
investigated. Uniform bodies of the simplest geometrical shapes (a cube,
cone and cylinder) are considered. In view of the difference in the
symmetries of these bodies the nature of their motions will be different.
The equations of motion of a cone and a cylinder are integrated in terms
of ultra-elliptic and hyperelliptic functions respectively. Sets of
positions of equilibrium, permanent rotations, and regular precessions

are indicated, and their branching and stability are investigated. Unlike
the case when only second-order moments of inertia are taken into account,
two features are determined here: 1) tow families of inclined positions
with respect to equilibrium exist, and 2) for a body in the form of a

cone the direct position of relative equilibrium is unstable if the vertex
of the cone is situated between an attracting centre and a fixed point,
and is stable otherxrwise, which has no analogue for permanent rotations of
a body with a triaxial central ellipsoid of inertia.

1. sSuppose OEnl is a fixed system of coordinates with origin at the centre of mass of
a body at a distance R from an attracting centre and an axis { directed along a rising local
vertical, and Ozx,z3 is a system of cooxdinates rigidly coupled to the body. The mutual
orientation of the §, %, { and =z, o, 23, axes is specified by a matrix of direction cosines.
We will denote the unit vectors of the §, 1, { axes by «,f,7, and their projections on to
the z,, £, 3 axes by a; B v: (=1, 2, 3)

The coordinates I, 3, 3 of a point of the body will be written in dimensionless form
by relating them to a characteristic linear dimension a of the body (a is the side of the
cube or the radius of the base for a cone and a cylinder).

The force function U of the forces of Newtonian traction has the form (u is the
gravitational constant and p is the density of the body)

U:SSS_“A&dxldzzdxsz“_gSSSf(a)dxldxz, das (.1
A=Re2(E + 1) -+ +ef)?l"=RU + 2 (zy7, +
272 + Zavs) + €2 (22 + 22 + 2 )] (e =a/R L)
fley=10 -+ 2eL 4+ & (8 -+ n*+ )74
It can be seen that U is independent of a; and f;, and hence equilibrium is preserved as

the body rotates about the [ axis.
We will calculate U up to fourth-order terms in & using the expansion
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FERY =1 + 5 e
f=1t f=3p—r [7=—150+90
Fr=1050 — 908 + 9rt, rP=E 4>+ ?
2. The corresponding expression for the principal term U of the force function (1.1)

for a cube, assuming that the coordinate planes of the system of coordinates Ouzz,zg are
parallel to the edges of the cube, has the form (m is the mass of the body)

U=»%{v’ + (0 + 1) U — 0® + v} %= Tame!/9%R
The equations of equilibrium of the cube

au
M

1
=—20(2v" + v’ — ) =0, G = — 2u(2p® + vty — ) =0

have the following three groups of solutions:

a) i=1, D) yi=0, v=vl:=%Y, )=
Pod = gt =Yy (123)

The family of solutions a) contains six positions of equilibrium in which the { axis
passes through the centre of the face; family b) contains twelve equilibria in which the
axis passes through the middle of an edge; family c) contains eight equilibira in which the
{ axis passes through the vertex of the cube.

By calculating the second variation 62U of the function U, it can be shown that the
family of equilibria c) is stable, while a) and b) are unstable, and the degree of instability
is equal to 1 and 2 respectively for these.

3. To obtain the force function of a cone and a cylinder we will direct the 3 axis
along the axis of symmetry of these bodies. The height of the cone and the cylinder, determined

from the condition for the second-order moments of intertia to be equal, is 2e¢ and ]/ga
respectively.
For a cone and a cylinder the principal terms in the expansion of the force function
have the following form respectively:
Uy =ky 3—5v5%) va (ky = pme?/(16R)) @.1)
U, =vo (6—7 7% 75> (vo = 11 pme?/(128R)) (3.2)
It is obvious that the positions of equilibrium of the cone and the cylinder are in-

dependent of the angles of rotation of the bodies about the §{ and z; axes.
The equations of equilibrium of the cone and the cylinder can be written in the form

dU./d8 = 3k, (5 cos2 0 — 1) sin 8 = 0 (3.3
dUy/d8 = 2v, (7 cos? B — 3) sin 26 = 0 (y, = cos 0) (3.9

and have the following solutions:

a)cos® = —1, b)cosd = 1/)¥5, c)cos® =1V 5,d)cos6 =1 (3.5)
a)cos® = —1, b)cos® = — 377, c) cos 6 =0, (3.6)
d) cos B = V3/7, e)cos B =1

The problem of the stability of the equilibria (3.5) and (3.6) can be solved by in-
vestigating the sign of the second derivative with respect to U;and U,. It can be shown that
the equilibria of the cone a) and b) are stable, while the equilibria c¢) and 4) are unstable,
the equilibria of the cylinder b) and d) are stable, while the equilibria a),c) and e) are
unstable.

4. wWe will investigate the permanent rotations and regular precessions of the cone and
the cylinder in Euler variables.
For both cases the kinetic energy

T =1,A416%+ %+ ¢+ 20 cos ) (4.1)

and the force functions (3.1) and (3.2) are independent of ¢ and VY. Consequently, the equations
of motion have the following cyclic integrals

O3 =¢ + P cosB=¢, op=¢ cosd+V =c¢, 4.2)

where ®; and @; are the projections of the instantaneous angular velocity ® of the zgand (
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axes. The equation for 6 reduces to the following form: for a cone
0" - oY sin 6 =ksin® (5cos20 — 1) (k = 3k,/4) (4.3)
and for a cylinder
87 4 ¢ sin 6 = v sin 0 cos 0 (7 cos? 8 — 3) (v = 4vy/d) {4.4)

BEgs. (4.2), (4.3), and (4.2), (4.4) are integrable. Their general solution can be obtained
by inversion of the ultraelliptic and hyperelliptic integrals respectively

dyg/dt = = Ipg (v, dysldt = = [pe (1))

Ps (¥a) = (1 — 3% + 28y, (1 — 9598 — 5y + 2000075 —
{e® -+ )

Po (¥s) =h {1 — v4) + 2vys® (1 — 9,506 — Tvs®) + 2 ¢ye075 —
Jfey? 4 ¢2?)

Egs.{4.2), (4.3) and (4.2), (4.4) have a family of partial solutions which are shown in

the table (A = 1/]/5 for a cone and A = 1f3_/7 for a cylinder), and determine the permanent
rotations of the cone and the cylinder.

Table 1
N cos @ v Notes N cos @ © v Notes
onl
i° 0 0 cz ¥ . for 5° A 0 2 £y = ALy
20 0 o 0 |a cylinder| ge A . 0 5 = ey
30 1 Wy =1 = ¢y 7° —k 1] o € == —Arz
4° o Wy = € = —cy| 8° R} €1 4] ¢y = —Af1

For solutions 59-8° the axis of the cone is inclined to the { axis and the cone rotates

with constant angular velocity 4 ==¢, around the { axis, or ¢ == ¢ around the z; axis.

In addition to these solutions, Eq.(4.2) and (4.3) also have a family of solutions of
the form ¢ = @, Y =1, , 8 =0, § = 8,, which exist when the conditions —k < o Py << 4K
are satisfied. Regular precessions of the cone correspond to these solutions. If g =10

or ¥ = 0, the regular precessions of the cone become permanent rotations. If instead of
G P we take ¢; and ¢, as the parameters, we will have the following equations for determin-
ing B:
(e — caBMeo — i) -k (1 — B — 5B%) =0, B = cos® (4.5)

It is obvious that for any ¢; and ¢ {¢; 7= ®= ¢}, Eq.(4.5) has at least one real root
8 = 8, {0 << 8, << n),since the function on the left-hand side of (4.5) changes sign in the
interval [—1, 1L

Consider the case of a cylinder. For solutions 1° and 2° the axis of symmetry of the
cylinder z3is perpendicular to the { axis, and the cylinder in this case rotates with an
arbitrary angular velocity ¢, around the [ axis, or ¢,” around the xyaxis. In cases 5°-8°
the axis of the cylinder is inclined to the { axis and the cylinder rotates with arbitrary
angular velocity ¥ around the [ axis, or @ around the 2Z; axis.

In addition to these solutions, Egs.{4.2) and (4.4) also have a family of solutions of
the form ¢ = @4, ¥ =14, , 60 =0, 8 =8, describing regular precessions of the cylinder. The
values 0, are found from the equation

(e — ef)(ca—eB) +vB (1 — BH(1 + (3 — 7TB*) =0, P =cosb (4.6)

, Like (4.5), Eq.(4.6) for any ¢; and ¢ (c; 5= +¢,) has at least one real root 8 =8, (0 <<
B, < 7). ;
If, instead of ¢;.and ¢y we take (;Jo' and VY, as the parameters, we will obtain the following

equation for 8,:
Teos¥8y — 3cos OB, — @y Yo' /v =0 4.7

when the conditions
L @oo | < 2v/V T, — V772 < cos larccos (Tgs™py' +4lva)/6l <. V772, 1=0,1,2
are satisfied, Egq.({4.7) has three different real roots; when lgoPo lz2v/}/7 there are three

real roots cos 8y = 2M%, cos By, — cos 8, == M's, two of which are identical; when | qode | > .
and —1<Ca*+a 1 there is one real root cosBy = a* + a”.

Here a* = (M &= N)'h, M = g /(14v), N =V M* —1/7/7

5. The sets of permanent rotations and regular precessions of the cone and the cylinder
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can be represented geometrically in the space of the variables ¢j, ¢, 0 (¥s) in the form of
surfaces defined by Egs. (4.5) and (4.6). To analyse these surfaces we will write Egs. (4.5)
and (4.6) in the form

(1 — yo)'m* — (1 + p5)°n® = Bk (1 — 79)*(1 + 75)° 5w® — 1) (5.1)
{1 — ys¥m® — (1 + 75)°n% = 2vyy (1*"" va)¥{1 + va)? (Tys* — 3) {5.2)
e =(m—n/V2 c=(m+n)y2

The sections of the surfaces (5.1) and {5.2) with the planes ¥z = Y represent hyperbola,
the principal axes of which are the coordinate axes m and n, if ys does not reduce the right-
hand sides of Egs. (5.1) and (5.2) to zero; otherwise, we will have a pair of intersecting
straight lines (I — ys) m == == (1 4 ¥s) » in the section. The points of the hyperbolas correspond
to regular precessions, while the points of the straight lines correspond to permanent
rotations.

In Figs.l-4 we show sections of the surfaces (5.1) by the planes n =10 (Fig.l), m=20

(Fig.2), n=F8m Fig.3), n=H+8m (Fig.4), (8, =8 1=(V5 — (¥5 + 1)Y. In all the

figures the points on the y, axis for which y; = == 1, =& 1/¥5 correspond to positions of
equilibrium of the cone. Its permanent rotations correspond to the straight lines #y;=1

(Fig.1), y, = —1 (Fig.2), vs=1/¥5 (Fig.3), and v, = —1/¥5 (Fig.4).
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In Figs.5-9 we show sections of the surface (5.2) by the planes n =0 (Fig.5), m=20
(Fig.6), n=z%m (Fig.7), n= £8m (Fig.8), and n =+ 8m (Fig.9) (65 = 8,1 = ()T —
VIWT+ V3.

In all Figs.5-9 points on the vy axis for which 73 =0, &+ 1, & )/31‘_7 correspond to
positions of equilibrium of the cylinders. The straight lines Vs = (Fig.5), Yy = —

(Fig.6), v3 =0 (Fig.7), yg == ]/gﬁ (Fig.8), and wy3 = _}/3/_7— (Fig.9) correspond to its
permanent rotations.

The remaining branches in Figs.1-9 correspond to regular precessions of the cone and
the cylinder.

We will investigate the stability of the permanent rotations and regular precessions of
the cone and the cylinder. Let us consider Fig.l to be specific, 1In it the points ({(y;=1,

m=0) and {y; =—1/¥5, m = 0), as was shown in Sect.3, correspond to unstable positions of
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equilibrium of the cone, while the points (y3 =1/ ¥ 5, m =0) and (ys = —1,m = 0) correspond
to stable equilibria. On the basis of the theory of bifurcations we conclude that the branches
shown in Fig.l by the plus and minus signs correspond to stable and unstable permanent
rotations and regular precessions of the cone. A change in stability occurs at the points

of bifurcation.
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similar conclusions can be reached regarding the stability of the permanent rotations
and regular precessions for other possible cases. The results of the analysis of the
stability and instability are shown in Figs.l1-9.
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Note that the permanent rotations of the cone and the cylinder corresponding to unstable
equilibrium orientations are also unstable for a fairly low angular velocity, and stable for

fairly high angular velocity.
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